煤炭工程 ›› 2025, Vol. 57 ›› Issue (10): 156-163.doi: 10. 11799/ ce202510019

• 研究探讨 • 上一篇    下一篇

基于抗差容积卡尔曼滤波的采煤机定位方法研究

马锐,宋建成,耿蒲龙,田慕琴,宋单阳,许春雨,常梦霄,张杰,李磊   

  1. 1. 太原理工大学 矿用智能电器技术国家地方联合工程实验室,山西 太原 030024

    2. 太原理工大学 煤矿电气设备与智能控制山西省重点实验室,山西 太原 030024

    3. 太原科技大学 电子信息工程学院,山西 太原 030024

  • 收稿日期:2025-01-22 修回日期:2025-03-15 出版日期:2025-10-10 发布日期:2025-11-12
  • 通讯作者: 马锐 E-mail:2842550964@qq.com

Research on Shearer Positioning Method Based on Anti-disturbance Cubature Kalman Filter

  • Received:2025-01-22 Revised:2025-03-15 Online:2025-10-10 Published:2025-11-12

摘要:

传统采煤机组合定位方法主要依赖惯性导航系统和里程计,但在复杂综采工作面环境下,惯性导航易受累积误差影响,同时采煤机运行过程中可能发生打滑等异常情况,导致里程计数据失真,进一步降低定位精度。针对此问题,提出了一种基于抗差容积卡尔曼滤波的组合定位方法,通过捷联惯导系统和里程计松耦合,将里程计提供的速度和位移数据与惯导系统的解算结果相结合,作为误差观测值输入滤波算法进行修正。同时在滤波算法中引入基于新息卡方检验的抗差处理,通过构建方差膨胀因子,自适应调整观测协方差矩阵,以增强容积卡尔曼滤波的抗差性和误差抑制能力。将滤波后的结果作为误差反馈输入到系统中,实现反馈校正,最后在整个解算完成后对组合状态进行有效性判断。仿真和实验结果显示,该算法可以有效降低野值影响,采用该组合导航算法后,定位精度可达0.1m。

关键词:

惯性导航系统 , 里程计 , 容积卡尔曼滤波 , 采煤机 , 定位方法

Abstract:

Abstract: The conventional method for positioning coal mining machines predominantly depends on the inertial navigation system. In the challenging operating conditions of a fully mechanized mining face, the positioning system is susceptible to cumulative errors, leading to a progressive decline in accuracy. Additionally, the coal mining machine occasionally encounters irregular driving events, such as slippage, causing anomalies in odometer readings. To address this issue, this paper presents an integrated positioning approach utilizing robust cubature Kalman filtering. By loosely coupling the SINS and OD systems, the speed and displacement data from the odometer are merged with the inertial navigation system’s solution results and incorporated into the filtering algorithm as error observations. Simultaneously, a robust processing method based on the chi-square test of innovation is introduced into the filtering algorithm. Through the construction of a variance inflation factor and adjustment of the observation covariance matrix, it influences the cubature Kalman filtering procedure to achieve robust filtering. The filtered output is fed back into the system as error correction to enable feedback adjustments, and the effectiveness of the combined state is evaluated once the entire solution process is finalized. Simulation and experimental results show that the algorithm can effectively reduce the influence of gross errors, and the positioning accuracy can reach 0.1m after using the integrated navigation algorithm.

中图分类号: